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Abstract
We have succeeded in quantizing massive collective gauge fields around the
doped hole by using the theoretical formula, which is based on the gauge-
invariant effective Lagrangian density, in underdoped cuprates. Quantized
massive gauge fields, which are induced around the doped hole, explain
naturally the broad spectra of angle-resolved photoemission around the hot spot,
short-range spin fluctuations and anomalous transport properties in underdoped
cuprates.

PACS numbers: 75.10.Nr, 75.10.Jm, 74.70.Vy

1. Introduction

The anomalous properties in underdoped cuprates remain controversial subjects. Angle-
resolved photoemission (ARPES) in underdoped cuprates is quite unusual [1]. For momentum
(π, 0) or (0, π), the spectral function of ARPES is anomalously broad, which means strong
scattering. Thus photoemission implies a lifetime that is generally short but has a pronounced
angular dependence. The nuclear magnetic or nuclear quadrupole resonance (NMR or NQR)
experiments for underdoped cuprates show that the nuclear spin relaxation rate, 1/T1T ,
has a Curie-like 1/T dependence at high T, generally associated with antiferromagnetic
correlations, but then falls at low T due to the opening of the pseudogap [2]. From the
NMR/NQR experiments, Tokunaga et al [3] have found a very important relation. That is,
the superconducting gap and the characteristic energy � of the spin fluctuation are correlated
with each other.

The normal-state transport properties in underdoped cuprates are very anomalous.
Especially the anisotropic scattering of the hole in Cu–O planes, T-linear resistivity and
the anomalous c-axis transport are very important subjects. Various models, which might
explain the anisotropic scattering property of the hole in Cu–O planes, have been proposed
[4–6].
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A central concept is the hot spot near (π, 0) and (0, π). In these models the hole lifetime
on most of the Fermi surface is much longer than in the hot spot. Recently the present author
has succeeded in quantizing the massive collective modes, whose mass depends strongly on
the angle of Fermi momentum, k̂F, of the hole on the Fermi surface in the gauge-invariant
formula [7–9].

In this paper, we give some explanations for the anomalous properties in underdoped
cuprates, using the theoretical formula, which is based on the gauge-invariant effective
Lagrangian density in the quasi-two-dimensional correlated electron system.

2. Quantized massive collective gauge fields around the doped carrier

When holes are doped lightly in a quasi-(2 + 1)-dimensional quantum antiferromagnet,
distortion appears around the doped hole. Since the distortion around the hole is due to
strong many-body effects, the distortion effects around the hole are nonlinear (Yang–Mills
field-like). Taking into account that the symmetry in the undoped (2 + 1)-dimensional
quantum antiferromagnet is invariant under local SU(2) [10], we think that the distorting
gauge fields Aa

µ (Yang–Mills fields) introduced by the hole have a local SU(2) symmetry.
Since the distortion field is short-range-like, the parts of the gauge fields are massive. Thus
it is assumed that SU(2) gauge fields Aa

µ are spontaneously broken through the Anderson–
Higgs mechanism in a way similar to the breaking of the antiferromagnetic symmetry around
the hole.

We set the symmetry breaking 〈0|φa|0〉 = 〈0, 0, µ(k̂F)〉 of the Bose field φa in the
Lagrangian density as follows,

L = 1
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k̂F is the vector of the Fermi momentum. After the symmetry breaking 〈0|φa |0〉 = 〈0, 0, µ(k̂F)〉,
that is, transition of fields φa with a zero asymptotics at infinity,

(φ1, φ2, φ3) −→ (φ1, φ2, µ(k̂F) + φ3)

makes the isotopic symmetry breaking explicit, and we can obtain the effective Lagrangian
density, Leff , at small doping of holes [11, 12]. That is, 〈0|φ3|0〉 can be regarded as a kind
of disorder parameter [13]. The value, µ(k̂F), of the symmetry breaking depends strongly on
the direction of the Fermi momentum, k̂F, on the Fermi surface. Furthermore, the value µ(k̂F),
is much correlated with the gap energy of the high-energy pseudogap. If the value of the
high-energy pseudogap is related to the strength of the antiferromagnetic short-range order
[14], the distortion, which is induced by the doped hole, becomes larger as the hole is doped
in the state of the larger gap energy of the high-energy pseudogap. In addition, since the gap
energy of the high-energy pseudogap is rapidly reduced with the increase of the doping level
p, the value, µ(k̂F), is reduced with the increase of the doping level p. Taking account of the
value, µ(k̂F), means the strength of the distortion induced by the doped hole, the value µ(k̂F),
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is higher around the hot spot,

Leff = 1
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where Ni
a is the spin parameter, ψ is the Fermi field of the hole, m1 = µ · g4,m2 = 2

√
2λ · µ,

and Ta are the SU(2) generators. The effective Lagrangian describes two massive vector fields
A1

µ and A2
µ, and one massless U(1) gauge field A3

µ. Although we have explicitly broken isotopic
invariance, the effective Lagrangian density is invariant under local gauge transformations,
ω(r) = 1 + αa(r)Ta , tending to unity at infinity. We shall give the explicit form of the
gauge transformations in new variables, confining ourselves to infinitesimal transformations,
δφa = −g4εabcφbα

c − m1εa3cα
c.

Extending the previous theory [11, 12], the generation function Z[J ] for the Green
functions is introduced as follows,

Z[J ] =
∫

DADBDNDCDC̄Dψ+DψDφ exp i
∫

d4x (Leff + LGF+FP + J · �) (3)

LDF+FP = Ba∂µAa
µ + 1

2αBaBa + iC̄a∂µDµCa (4)

where Ba and Ca are Nakanishi–Lautrup (NL) fields and Faddeev–Popov fictitious fields,
respectively,

J · � ≡ J aµAa
µ + J a

BBa + J a
N · Na + J̄ a

C · Ca + J a
C̄
C̄a + η̄ψ + ηψ+ + J a

φ φa. (5)

BRS-quartets [15, 16] in the present theoretical system are (φ1, B
1, C1, C̄1),

(φ2, B
2, C2, C̄2) and

(
A3

L,µ, B3, C3, C̄3
)
, where A3

L,µ is the longitudinal component of A3
µ.

So we need these fields for the unitarity condition, although these fields are unobservable and
fictitious ones. It is fascinating that a part of the present theoretical formula is similar to the
so-called Georgi–Glashow model for unifying weak and electromagnetic interactions [17].

Because the masses of A1
µ and A2

µ are formed through the Higgs mechanism by introducing
the hole, the fields A1

µ amd A2
µ exist around the hole within a length of ∼1/m1 ≡ Rc.

The quantized gauge fields Aa
µ are expressed as

Aa
µ = (2π)−3/2

∫ [
aa(p)ea

µ(p) exp(ipr) + aa+(p)ea
µ(p) exp(−ipr)

]
d3p

/√
2ωa

p

where ωa
p =

√
p2 + m2

1 (a = 1, 2) and ωa
p =

√
p2 (a = 3), aa+(p) and aa(p) are the creation

and annihilation operators of the gauge particle Aa
µ with momentum p, respectively, and ea

µ(p)

are the polarization vectors. The masses, m1, of the gauge fields A1
µ and A2

µ induced by the
hole depend strongly on the angle of Fermi momentum of the hole on the Fermi surface. The
value, m1, is higher in the case of the hole around the hot spot. It is thought that the interaction
between two holes for the Cooper pair formation is derived from the exchange of the fields



9374 I Kanazawa

Aa
µ [11, 12, 18–20]. The effective interaction between two holes at k ∼ (−k̂h

F , 0
)

and
k ∼ (

k̂h
F , 0

)
for the Cooper pair formation is given approximately as
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where k̂h
F is the Fermi momentum at the hot spot, and C+

k̂h
F

and Ck̂h
F

are the creation and

annihilation operators of the hole with momentum k̂h
F , respectively,
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=
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(2kF)2 + m1
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√
(2kF)2 +

(
µ

(
k̂h

F

)
g4

)2
.

The value of m1 becomes higher around the hot spot. This means that the attractive interactions
between two holes at k ∼ (−k̂h

F , 0
)

and k ∼ (
k̂h

F , 0
)

or between two holes at k ∼ (
0,−k̂h

F

)
and

k ∼ (
0, k̂h

F

)
for the Cooper pair formation are the strongest ones in comparison with those of

the other pairs. As described previously [11, 12], the effective interaction between two holes
is like the asymptotic freedom, since the SU(2) Yang–Mills fields are more effective when the
distance between the holes is shorter than ∼2/m1.

The present theory is based on the local SU(2) formulation [11, 12]. Although each
standpoint is very different, a part of the present formula is similar to the recent SU(2)
spinon–holon model [21, 22]. In addition, the present theory satisfies the gauge-invariance,
renormalization and unitarity conditions.

3. Angle-resolved photoemission spectra in underdoped cuprates

The interesting results of the (π, 0) photoemission spectra, whose features are very broad, for
insulating Ca2CuO2Cl and Dy-doped Bi2Sr2CaCu2O8+σ stress that the (π, 0) spectra evolve
continuously from the insulator to metal [23]. In particular, it means that the 100–200 meV
high-energy pseudogap in underdoped cuprates can be connected to the property of an insulator
as pointed out by Laughlin [23]. This suggests strongly that the mechanism of the (π, 0) broad
spectra must be derived from some parameters connected with the high-energy pseudogap. It
should be noted that the distortion strength, which is identified with the symmetry breaking
µ(kF) in the mass = µ(kF)g4 of the massive gauge fields around the hole, is connected with
the high-energy pseudogap.

Now we shall consider the broad feature of the ARPES near (π, 0) in underdoped high-Tc

cuprates from the present theoretical view. The creation of a photohole is more likely to produce
collective excitation plus a hole in the quasiparticle band. From equation (3), we can
obtain the Green functions of the massive gauge fields A1

µ and A2
µ in the ’t Hooft–Feynman

gauge as follows, that is, the Fourier transform of
〈
Aa

µAa
ν

〉
a=1,2 is DR(k, ω) ∼ {

gνµ

/(
ω2−(

k2 + m2
1

)
+ �

)}
. The hole spectral function is represented by

A(p, ε) ∝ Im�(p, ε)[
ε − εk − Re�(p, ε)

]2
+

[
Im�(p, ε)

]2 (6)

where the self-energy is given by

�(p, ε) = − g2
2

(2π)2π

∫
dp1

∫ ∞

−∞
dω

∫ ∞

−∞
dε1

Im DR(p − p1, ω)A(p1, ε1)

ω + ε1 − ε − iδ

×
(

tanh
ε1

2T
+ coth

ω

2T

)
. (7)

The recoil relaxation with collective excitations occurs in a higher-energy region in comparison
with the hole energy εk + Re�(p, ε).
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Thus, in the case of ε �
√

m2
1 + (2kF)

2, the imaginary part of the self-energy is introduced
approximately as follows,

Im
∑

(ε) ∼
√

m2
1 + (2kF)2.

This means that, in a higher-energy region, the recoil relaxation is dominantly due to emission
and absorption of the massive gauge fields A1

µ and A2
µ. As described before, it should be noted

that the value of the mass, m1, of the massive gauge fields A1
µ and A2

µ is higher around the hot
spot. So the present theory predicts that the broad feature of ARPES line shape is remarkable
near the hot spot. This is consistent with the experimental results [24, 25].

Also, as the doping increases, both gap energies of the low- and high-energy pseudogaps
decrease remarkably, and these pseudogaps annihilate in the overdoped region. On the basis of
the decrease of the gap energy of the high-energy pseudogap, the value µ(kF) of the symmetry
breaking and the masses of the gauge fields A1

µ and A2
µ decrease as the doping increases, and

the massive gauge fields almost annihilate in the overdoped region. Thus, the value of the
imaginary part of the self-energy decreases as the doping increases, and the broad feature in
the ARPES spectrum annihilates in the overdoped region.

4. Short-range spin fluctuation induced by the massive gauge fields

We shall consider an important relation [3] between the superconducting gap and the
characteristic energy � of the spin fluctuation from the present theoretical view. The NMR
or NQR technique has supplied microscopic information on the doped high-Tc copper oxides.
The nuclear spin-lattice relaxation rate is given by

1/T1T ∼ γ 2
NA2

hf

∑
q

Im χ−+(q, ω)/ω

where ω is the nuclear resonance frequency, γN the gyromagnetic ratio of the nuclear spin and
Ahf the hyperfine coupling constant. Im χ−+(q, ω) is the imaginary part of the dynamic spin
susceptibility. In underdoped high-Tc cuprates, it is seen from the first term in equation (2)
that the massive gauge fields A1

µ and A2
µ, which are introduced by the doped holes, strongly

induce the short-range spin fluctuation.
Then we can estimate approximately the imaginary part of the dynamical spin

susceptibility using equations (6) and (7) taking account of the effect of the massive gauge
fields as follows,

Im χ−+(q, ω)

ω
∼ 1

ω
Im

(
i
∫ ∞

0
dt eiωt

〈[
S−

q (t), S+
−q(0)

]〉) ∼
∫

δ(k − kF)A(k + q, ε) dk

∝
∫

dk δ(k − kF)
Im�(k + q, εk+q)(

εk+q − εk − Re�(k + q, εk+q)
)2

+
(
Im�(k + q, εk+q)

)2

∝ Im�(kF + q, εkF+q)(
εkF+q − εkF − Re�(kF + q, εkF+q)

)2
+

(
Im�(kF + q, εkF+q)

)2 . (8)

When Re�
(
kF + q, εkF+q

)
is small in comparison with εkF+q − εkF ∼ ω, equation (8) is

represented as follows,

Im χ−+(q, ω)

ω
∼ Im�(kF + q, εkF+q)

ω2 +
(
Im�(kF + q, εkF+q)

)2 (9)
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where

�(kF + q, εkF+q) = − g2
1

(2π)2π

∫
dp1

∫ ∞

−∞
dω

∫ ∞

−∞
dε1

Im DR(kF + q − P1, ω)A(P1, ε1)

ω + ε1 − εkF+q − iδ

×
(

tanh
ε1

2T
+ coth

ω

2T

)
. (10)

DR (kF + q−P1, ω) is the Green function of the massive gauge fields, and A(P1, ε1) corresponds
to equation (6). Since Im� means the relaxation due to emission and absorption of the massive
gauge fields A1

µ and A2
µ, we can see that the characteristic energy � of the short-range spin

fluctuation is attributed to Im� ∝ the mass, m1(µk̂F
), of the massive gauge fields A1

µ and A2
µ

around the hot spot (0, π). Because the superconducting gap around the hot spot (0, π) is
derived from the Cooper pair formation, which is introduced from exchange interaction of the
massive gauge fields A1

µ and A2
µ, we can introduce approximately the relation in which the

superconducting gap is correlated with the mass, m1, of the massive gauge field.
In other words, we can obtain the important relation in which the superconducting gap is

correlated with the characteristic energy, �, of the short-range spin fluctuation.

5. The anomalous transport properties in underdoped cuprates

The retarded and advanced in-plane Green’s functions GR,A(p, ε) of the hole are 1/(ε − ξp ±
i�(p, ε)), where ξp = (p2 −kF)/2m∗, kF is the Fermi momentum, and m∗ is the effective mass
of the hole, �(p, ε) is the scattering rate, and contains some relaxations. First, the relaxation
due to massless U(1) gauge field A3

µ [26] is

τ−1(ε, p) ∝ T

∫
dp′2 dω Im GN(ε − ω,p′)Vµ(p) Im

[(
δµν − qµqν

q2

)

× (ω2 − c2q2 + i/2τinst)
−1

]
Vν(p)(1 − coth θp,p′)

where GN(r, τ ) are Na propagators, θp,p′ is the scattering angle and Vµ(p) is the vertex. τinst

is the relaxation time of the gauge field A3
µ by the instanton-like spin fluctuation [27]. This

relaxation contributes dominantly to the T-linear resistivity in the normal state [26].
The second relaxation is due to emission and adsorption of the massive gauge fields A1

µ

and A2
µ.

From equation (3), we can obtain the Green function of the massive gauge fields A1
µ and

A2
µ in the ’t Hooft–Feynman gauge as follows, that is, the Fourier transform of

〈
Aa

µAa
ν

〉
a=1,2 is

DR(k, ω) ∼ gµν

/(
ω2 − (

k2 + m1
2
)

+ �
)
.

According to the Keldysh method [28–32], the hole energy relaxation time τε is defined
by the following kinetic equation,

1

τε

∝ − δ

δnε

∫
dp

1

(2π)3
Im[GA(p, ε)]�(p, ε) (11)

where nε is the hole energy distribution function. In the random-phase approximation, the
collision integral, �(p, ε), is represented as follows,

�(p, ε) = −2
∫∫

dq dω
1

(2π)4
Im[GA(p + q, ε + ω)]g2

2 [Im DR(q, ω)] RT (p, q, ε, ω)

(12)
RT = [1 + NT (ω)]f (p + q, ε + ω)[1 − f (p, ω)] − NT (ω)[1 − f (p + q, ε + ω)]f (p, ω)

(13)



Quantized massive collective excitations, short-range spin fluctuations and high-Tc superconductivity 9377

where NT (ω) = − 1
2

[
1 − coth ω

2T

]
, and f is the hole distribution function.

Then the collision integral �(p, ε) equals

�(p, ω) = −2
∫∫

dp dω
1

(2π)4
Im [GA(p + q, ε + ω)]g2

2

× Im �(
ω2 − (

q2 + m1
2
)

+ Re �
)2

+ (Im �)2
RT (p, q, ε, ω). (14)

Since the important energy region of the hole is around the Fermi energy, we can consider
the collision integral in the condition of ε ∼ ω �

√
q2 + m2

1. In addition, taking account of
Im � ∼ m1 <

√
q2 + m2

1, the collision integral �(p, ε) is represented approximately as

�(p, ε) = −2
∫∫

dq dω
1

(2π)4
Im [GA(p + q, ε + ω)]g2

2 Im �RT (p, q, ε, ω)

∝ m1(p)g2
2
∫∫

dq dω Im [GA(p + q, ε + ω)]RT (p, q, ε, ω). (15)

Now we shall discuss the collision integral �(k̂F, ε) of the Fermi momentum k̂F. I (k̂F, ε) equals

�(k̂F, ε) ∝ m1(k̂F)g2
2
∫∫

dq dω Im[GA(k̂F + q, ε + ω)]RT (k̂F, q, ε, ω)

∼ µ(k̂F)g4g2
2
∫∫

dq dω Im[GA(k̂F + q, ε + ω)]RT (k̂F, q, ε, ω). (16)

Since the value, µ(k̂F), is much higher around the hot spot, the value of the collision
integral �(k̂F, ε) for the hole of the Fermi momentum k̂F near (π, 0) or (0, π) becomes higher.
This implies that the hole lifetime near the (π, 0) or (0, π) is unusually short.

On the other hand, the value, µ(k̂F), is much reduced around the cold spot. As a result, the
collision integral �(k̂F, ε) for the hole of the Fermi momentum k̂F parallel to (π, π) decreases
remarkably. This means that the hole lifetime in cold spots near the zone diagonal is much
longer than elsewhere on the Fermi surface.

Now we shall consider the c-axis conductivity σc in the present theoretical formula. In a
very anisotropic system such as underdoped cuprates, an adequate theoretical expression is

σc =
∫

d2p

(2π)2
t⊥(p)2GR(p, ε)GA(p, ε)

∂f

∂ε
. (17)

Here t⊥(p) is the interplane hopping, f (ε) is the Fermi function and GR,A(p, ε) =
1/(ε − ξp ± i�(p, ε)) are the retarded and advanced in-plane Green’s functions of the hole,
where �(p, ε) is shown in equation (12). The interplane hopping t⊥(p) is strongly momentum
dependent, being very small for the Fermi momentum parallel to (π, π) and breaking maximal
for the Fermi momentum parallel to (π, 0) [33].

Thus the c-axis conductivity σc can be approximated as follows,

σc ∝
∑
k̂F

t⊥(k̂F)
2 1(

ε − ξk̂F

)2
+ �(k̂F, ε)2

∂f

∂ε
(18)

where �(k̂F, ε) is given in equation (16). The value of t⊥(kF, ε) is much higher around the
hot spot. Therefore, contributions due to the �(k̂F, ε) around the hot spot dominate the c-axis
conductivity. Recently Lavrov et al [34] have found the very interesting result that the c-
axis conductivity is reduced remarkably upon cooling through the Néel temperature TN. The
present theory can explain naturally this experimental result.

That is, the growth of the antiferromagnetic state, upon cooling through the Néel
temperature, increases remarkably the distortion µ

(
k̂h

F

)
around the doped hole at the hot spot.
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Taking into account equation (16) and (18), the increase of µ
(
k̂h

F

)
induces a reduction of the

c-axis conductivity.

6. Conclusion

We have given some explanations for the broad spectra around (π, 0) of ARPES, short-range
spin fluctuation and anomalous transport properties in underdoped cuprates, by using quantized
massive collective gauge fields around the doped hole.
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